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Outlines

1.  Methodological question: Can multimodal machine learning (& modelling) 
approaches build more accurate prognostic (potentially predictive) 
signatures ?

2. Biological question: Can we identify mechanisms associated with 
immunotherapy response with multimodal analyses ?

1. Introduction: build new biomarkers for immunotherapy outcome in 
Non-Small Cell Lung Cancer

2. Materials and Methods: A retrospective multimodal cohort to develop 
multimodal predictors

3. Results: New proofs of the benefits of multimodal machine learning to 
build accurate prognostic models

4. Discussion: What can we do next ?



3SysBio Curie

Multimodality to predict immunotherapy outcome in lung cancer

Expression of PD-L1 in ≥ 
50% cancer cells Anti PD1\PD-L1

Anti PD1\PD-L1
+ chemo

Expression of PD-L1 in < 
50% cancer cells

Standard-of-care for advanced NSCLC in Europe

• Immunotherapy is the standard-of-care for metastatic Non-Small Cell Lung 
Cancer (NSCLC)

• Highly variable responses + only 40% of patients are alive at 2 years

• Established univariate biomarkers are very few with limited power.



4SysBio Curie

Multimodality to predict immunotherapy outcome in lung cancer

1.  Methodological question: Can multimodal machine learning (& modelling) 
approaches build more accurate prognostic (potentially predictive) 
signatures ?

2. Biological question: Can we identify mechanisms associated with 
immunotherapy response with multimodal analyses ?



5SysBio Curie

Outlines

1.  Methodological question: Can multimodal machine learning (& modelling) 
approaches build more accurate prognostic (potentially predictive) 
signatures ?

2. Biological question: Can we identify mechanisms associated with 
immunotherapy response with multimodal analyses ?

1. Introduction: build new biomarkers for immunotherapy outcome in 
Non-Small Cell Lung Cancer

2. Materials and Methods: A retrospective multimodal cohort to develop 
multimodal predictors

3. Results: New proofs of the benefits of multimodal machine learning to 
build accurate prognostic models

4. Discussion: What can we do next ?



6SysBio Curie

A retrospective multimodal cohort - I
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A retrospective multimodal cohort - II

PRIMARY_LUNG

META_LIVER_1

ADP_MEDHIL_HL
Solid biopsy of one 
patient

~20000 protein-coding 
genes

201 annotated/segmented 
18F-FDG PET/CT

236 annotated/segmented 
digitized HE slides

134 bulk RNA-seq profiles 
from solid biopsy
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A retrospective multimodal cohort - III

317 
patients

Radiomics Pathomics Transcriptomics Clinical Observed
outcome
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A retrospective multimodal cohort - III

317 
patients

Radiomics Pathomics Transcriptomics Clinical Observed
outcome

Missing values
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A retrospective multimodal cohort - III

317 
patients

Radiomics Pathomics Transcriptomics Clinical Observed
outcome

Missing modalities
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Investigate multiple learning tasks to extract consensus trends

Multiple outcomes

Survival outcomes:
Overall Survival (OS)

Progression-Free Survival 
(PFS)

Binary outcomes:
Death at 1 year

Progression at 6 months
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Investigate multiple learning tasks to extract consensus trends

Multiple outcomes Multiple algorithms

Survival outcomes:
Overall Survival (OS)

Progression-Free Survival 
(PFS)

Binary outcomes:
Death at 1 year

Progression at 6 months

Linear algorithms:
Logistic regression with 
elastic net penalty

Cox model with elastic net 
penalty

Tree ensemble algorithms:
XGBoost

Random Survival Forest
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Investigate multiple learning tasks to extract consensus trends

Multiple outcomes Multiple algorithms Multiple fusion strategies

Survival outcomes:
Overall Survival (OS)

Progression-Free Survival 
(PFS)

Binary outcomes:
Death at 1 year

Progression at 6 months

Linear algorithms:
Logistic regression with 
elastic net penalty

Cox model with elastic net 
penalty

Tree ensemble algorithms:
XGBoost

Random Survival Forest

Late fusion

Early fusion
 (without or with univariate 

feature selection)

Fusion with attention 
weights
(DyAM)
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Univariate established biomarkers show limited performance

PD-L1 status
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Univariate established biomarkers show limited performance

PD-L1 status

C-index OS 
(whole cohort)

PD-L1 
binary status

0.54 [0.51 – 0.57] 
pval=0.014

PD-L1 score 
(100 – TPS)

0.53 [0.48 – 0.58] 
pval=0.104
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Univariate established biomarkers show limited performance

TMB

TILs

PD-L1 status

C-index OS 
(whole cohort)

PD-L1 
binary status
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pval=0.014

PD-L1 score 
(100 – TPS)

0.53 [0.48 – 0.58] 
pval=0.104
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A benchmark of unimodal predictors

Target (number of 
patients)

OS

(n=79)

1-year death

(n=77)

PFS

(n=80)

6-months progression

(n=75)

Metric C-index AUC C-index AUC

Clinical

Tree 
ensembles 0.67±0.01   * 0.59±0.05 0.56±0.02          0.58±0.04

Linear 0.60±0.02   * 0.73±0.02   * 0.53±0.03          0.61±0.03   *

Radiomics

Tree 
ensembles 0.61±0.02   * 0.62±0.04 0.57±0.01          0.56±0.05

Linear 0.61±0.02   * 0.47±0.03 0.55±0.02          0.48±0.04

Pathomics
Tree 
ensembles 0.59±0.02 0.54±0.05 0.56±0.02          0.58±0.06   *

Linear 0.58±0.02 0.56±0.03 0.51±0.02          0.61±0.03   *

RNA
Tree 
ensembles 0.69±0.02   * 0.75±0.04   * 0.57±0.02          0.60±0.04   *

Linear 0.58±0.02 0.65±0.03 0.59±0.02   *          0.61±0.03

 

*: permutation p-value ≤ 0.05 
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Robust feature importance – RNA modality
Feature importance ranking aggregated over both tasks (OS and 1 year death) and both 
algorithms (linear and tree ensemble)  
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Robust feature importance – radiomic modality
Feature importance ranking aggregated over both tasks (OS and 1 year death) and both 
algorithms (linear and tree ensemble)  
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No integration strategy performed 
the best for all the tasks

Benchmark highlights benefits of multimodal approaches 
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Multimodal score improves patient risk stratification
• A threshold is learnt on the training set of each fold of the cross-validation scheme and 

applied to the test set.

• Group membership is defined as the most frequently attributed group (low risk vs high 
risk) across the 100 repeats.
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Multimodal score brings additional predictive information  

Likelihood-ratio tests show a significant 
effect of the multimodal score wrt to 
routine clinical information
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Conclusions

1. Late fusion is a relevant baseline strategy/starting point for further multimodal studies 
(simplicity, handle missing modalities easily…)

2.  We provided new evidence of the relevance of multimodal approach for building 
powerful predictors  should motivate others to collect new and larger multimodal 
cohorts.

3. Simple signatures of the Tumor MicroEnvironment seems to predict well NSLC outcome 
and lead to relevant hypotheses.

4. The results need to be further validated on larger an external data sets. More complex 
(e.g. end-to-end strategies) should be investigated.
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Project 1: Study the link between radiomics and RNA expression

1.  Methodological question: Can multimodal machine learning (& modelling) 
approaches build more accurate prognostic (potentially predictive) 
signatures ?

2. Biological question: Can we identify mechanisms associated with 
immunotherapy response with multimodal analyses ?

• 93+ patients with RNAseq and PET images (biopsy site is missing for some of them)

• Are different clusters based on radiomics/imaging characteristics associated with 
differentially expressed genes or biological pathways ?

• Can we identify/probe biological pathways deregulation with radiomic characteristics ?

• Can we use RNAseq data to understand better the radiomic phenotype of tumors ?



31SysBio Curie

Project 2: Multiple Instance Learning for metastatic disease

1.  Methodological question: Can multimodal machine learning (& modelling) 
approaches build more accurate prognostic (potentially predictive) 
signatures ?

2. Biological question: Can we identify mechanisms associated with 
immunotherapy response with multimodal analyses ?

• Use each metastasis as an instance with a hidden outcome to predict patient’s outcome



32SysBio Curie

Project 3: Improve PET representation with supervised learning 

1.  Methodological question: Can multimodal machine learning (& modelling) 
approaches build more accurate prognostic (potentially predictive) 
signatures ?

2. Biological question: Can we identify mechanisms associated with 
immunotherapy response with multimodal analyses ?

• Predict the total tumor volume in lymph nodes, distant regions... from unannotated MIP 
images 
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Late fusion strategy

Embedding 
WSI

Embedding 
PET images

Embedding 
RNAseq

Modality embedding

Predictor

WSI based 
prediction

PET based 
prediction

RNA based 
prediction

Positive response

Positive 
response

Negative response

Positive 
response

Aggregation
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Early fusion strategy

Embedding 
WSI

Embedding 
PET images

Embedding 
RNAseq

Concatenation

Predictor
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DyAM strategies

• Attention mechanism 
weighs each modality for 
each patient

• The model learns to 
combine different 
modalities through 
normalization and grey 
network
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