( TIPIT A

Towards an Integrative approach for Precision ImmunoTherapy
. J

LITO lab meeting

Nicolas Captier

21/12/2023
Fondation PR[AI]RIE _ D i} Inserm
pourlsca:-?g::\:;%r;er ...................................... we  CUrNie L

nstitutCurie



Outlines

1. Introduction: build new biomarkers for immunotherapy outcome in
Non-Small Cell Lung Cancer

2. Materials and Methods: A retrospective multimodal cohort to develop
multimodal predictors

3. Results: New proofs of the benefits of multimodal machine learning to
build accurate prognostic models

4. Discussion: What can we do next ?

) SysBio Curie



Multimodality to predict immunotherapy outcome in lung cancer

* Immunotherapy is the standard-of-care for metastatic Non-Small Cell Lung
Cancer (NSCLC)

* Highly variable responses + only 40% of patients are alive at 2 years

* Established univariate biomarkers are very few with limited power.

Standard-of-care for advanced NSCLC in Europe
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Multimodality to predict immunotherapy outcome in lung cancer

1. Methodological question: Can multimodal machine learning (& modelling)
approaches build more accurate prognostic (potentially predictive)
signatures ?

2. Biological question: Can we identify mechanisms associated with
immunotherapy response with multimodal analyses ?
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A retrospective multimodal cohort - |
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A retrospective multimodal cohort - |
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A retrospective multimodal cohort - Il
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A retrospective multimodal cohort - Il
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A retrospective multimodal cohort - Il
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Investigate multiple learning tasks to extract consensus trends

Multiple outcomes

Survival outcomes:
Overall Survival (OS)

Progression-Free Survival
(PFS)
Binary outcomes:

Death at 1 year

Progression at 6 months
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Investigate multiple learning tasks to extract consensus trends

Multiple outcomes

Survival outcomes:
Overall Survival (OS)

Progression-Free Survival
(PFS)
Binary outcomes:

Death at 1 year

Progression at 6 months

Multiple algorithms

Linear algorithms:
Logistic regression with
elastic net penalty

Cox model with elastic net
penalty

Tree ensemble algorithms:

XGBoost

Random Survival Forest

Multiple fusion strategies

Late fusion

Early fusion

(without or with univariate

feature selection)

Fusion with attention
weights
(DyAM)
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Univariate established biomarkers show limited performance

Progression-Free Survival
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Univariate established biomarkers show limited performance

Progression-Free Survival
—— PDL1 negative (< 1%)
PDL1 positive (>= 1%)
e pvalue = 8.495e-03

1.0

0.8

0.6

0.4

C-index OS
(whole cohort)

PD-L1 0.54 [0.51 — 0.57]

0 250 500 750 da)1/200 1250 1500 1750 bl n ar Statu S Val - O . O 14
PD'Ll Status Overall Survival y p

0.2

0.0

—— PDL1 negative (< 1%)

Cruenec-ro | PD-L1 score | 0.53 [0.48 — 0.58]
(100 - TPS) |pval=0.104

0.8

0.6

0.4

0.2

0.0

0 250 500 750 1000 1250 1500 1750
days

ous)
'@ SysBio Curie



Univariate established biomarkers show limited performance

Progression-Free Survival Overall Survival
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A benchmark of unimodal predictors

OS 1-year death PEFS 6-months progression
Target (number of
patients) (n=79) (n=77) (n=80) (n=75)
Metric C-index AUC C-index AUC
Tree 0.67+0.01 * 0.59+0.05 0.56+0.02 0.58+0.04
Clinical  |-cnsembles
Linear 0.60+0.02 * 0.73+0.02 * 0.53+0.03 0.61+0.03 *
Tree
0.61+0.02 * 0.62+0.04 0.57+0.01 0.56+0.05
Radiomics er.lsembles
Linear 0.61+0.02 * 0.47+0.03 0.55+0.02 0.48+0.04
Tree
Pathomics | ensembles | 0-39%0-02 0.54+0.05 0.56+0.02 0.58+0.06 *
Linear 0.58+0.02 0.56+0.03 0.51+0.02 0.61+0.03 *
Tree . - *
RNA encembles | 0-69%0-02 0.75+0.04 0.57+0.02 0.60+0.04
Linear 0.58+0.02 0.65+0.03 0.59+0.02 * 0.61+0.03

*: permutation p-value < 0.05
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Robust feature importance — RNA modality

Feature importance ranking aggregated over both tasks (OS and 1 year death) and both

algorithms (linear and tree ensemble)

Consensus importance
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Robust feature importance - radiomic modality

Feature importance ranking aggregated over both tasks (OS and 1 year death) and both
algorithms (linear and tree ensemble)
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Benchmark hi

ghlights benefits of multimodal approaches

A

Late Early

Best multimodal combination for different integration strategies
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Benchmark highlights benefits of multimodal approaches

A

Late Early

Best multimodal combination for different integration strategies
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* The majority of multimodal
models outperformed the best
unimodal models
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Benchmark highlights benefits of multimodal approaches

A. Best multimodal combination for different integration strategies

Late Early DyAM
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I I I I

Best unimodal models

clinical

0.551

The majority of multimodal
models outperformed the best
unimodal models

Late fusion performed the best
for 1 year death prediction
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Benchmark highlights benefits of multimodal approaches

A. Best multimodal combination for different integration strategies
Late Early DyAM
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0.50

The majority of multimodal
models outperformed the best
unimodal models

Late fusion performed the best
for 1 year death prediction

Clinical, RNA and radiomic
consistently involved in the
best multimodal models for 1y
death prediction
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Benchmark highlights benefits of multimodal approaches

A. Best multimodal combination for different integration strategies

Late Early DyAM
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Multimodal score improves patient risk stratification

* Athreshold is learnt on the training set of each fold of the cross-validation scheme and
applied to the test set.

* Group membership is defined as the most frequently attributed group (low risk vs high
risk) across the 100 repeats.
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Multimodal score brings additional predictive information
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Likelihood-ratio tests show a significant
effect of the multimodal score wrt to
routine clinical information
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Conclusions

1. Late fusion is a relevant baseline strategy/starting point for further multimodal studies
(simplicity, handle missing modalities easily...)

2. We provided new evidence of the relevance of multimodal approach for building
powerful predictors [] should motivate others to collect new and larger multimodal
cohorts.

3. Simple signatures of the Tumor MicroEnvironment seems to predict well NSLC outcome
and lead to relevant hypotheses.

4. The results need to be further validated on larger an external data sets. More complex
(e.g. end-to-end strategies) should be investigated.
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Project 1: Study the link between radiomics and RNA expression

93+ patients with RNAseq and PET images (biopsy site is missing for some of them)

* Are different clusters based on radiomics/imaging characteristics associated with
differentially expressed genes or biological pathways ?

e Can we identify/probe biological pathways deregulation with radiomic characteristics ?

* Can we use RNAseq data to understand better the radiomic phenotype of tumors ?

00g
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Project 2: Multiple Instance Learning for metastatic disease

* Use each metastasis as an instance with a hidden outcome to predict patient’s outcome
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Project 3: Improve PET representation with supervised learning

* Predict the total tumor volume in lymph nodes, distant regions... from unannotated MIP
Images
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Late fusion strategy
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Early fusion strategy
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DyAM strategies

Predictions Attentions
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