

TIPIT

Towards an Integrative approach for Precision ImmunoTherapy

LITO lab meeting

Nicolas Captier

21/12/2023

Fondation
pour la recherche
sur le **cancer**

PR[AI]RIE
PaRis Artificial Intelligence Research InstitutE

institut
Curie

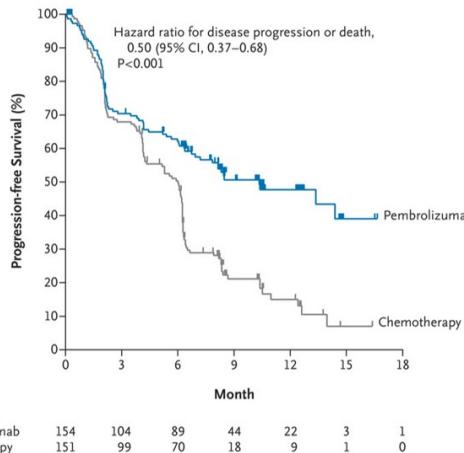
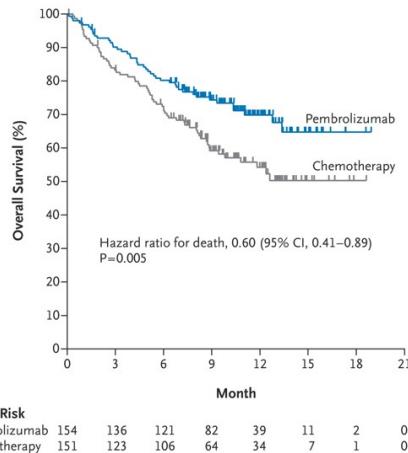
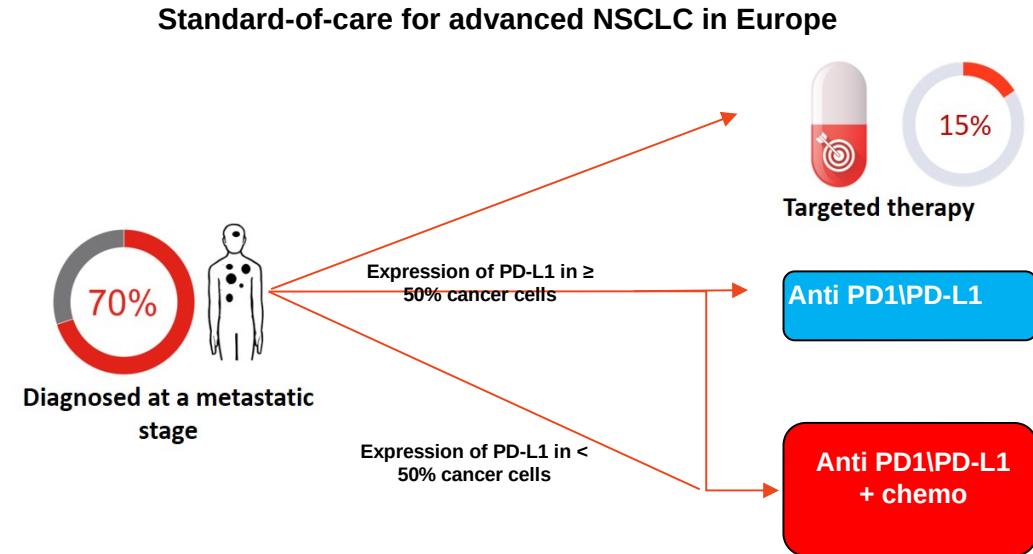
Inserm
La science pour la santé
From science to health

Outlines

- 1. Introduction:** build new biomarkers for immunotherapy outcome in Non-Small Cell Lung Cancer
- 2. Materials and Methods:** A retrospective multimodal cohort to develop multimodal predictors
- 3. Results:** New proofs of the benefits of multimodal machine learning to build accurate prognostic models
- 4. Discussion:** What can we do next ?

Multimodality to predict immunotherapy outcome in lung cancer

- Immunotherapy is the standard-of-care for metastatic Non-Small Cell Lung Cancer (NSCLC)
- Highly variable responses + only 40% of patients are alive at 2 years
- Established univariate biomarkers are very few with limited power.



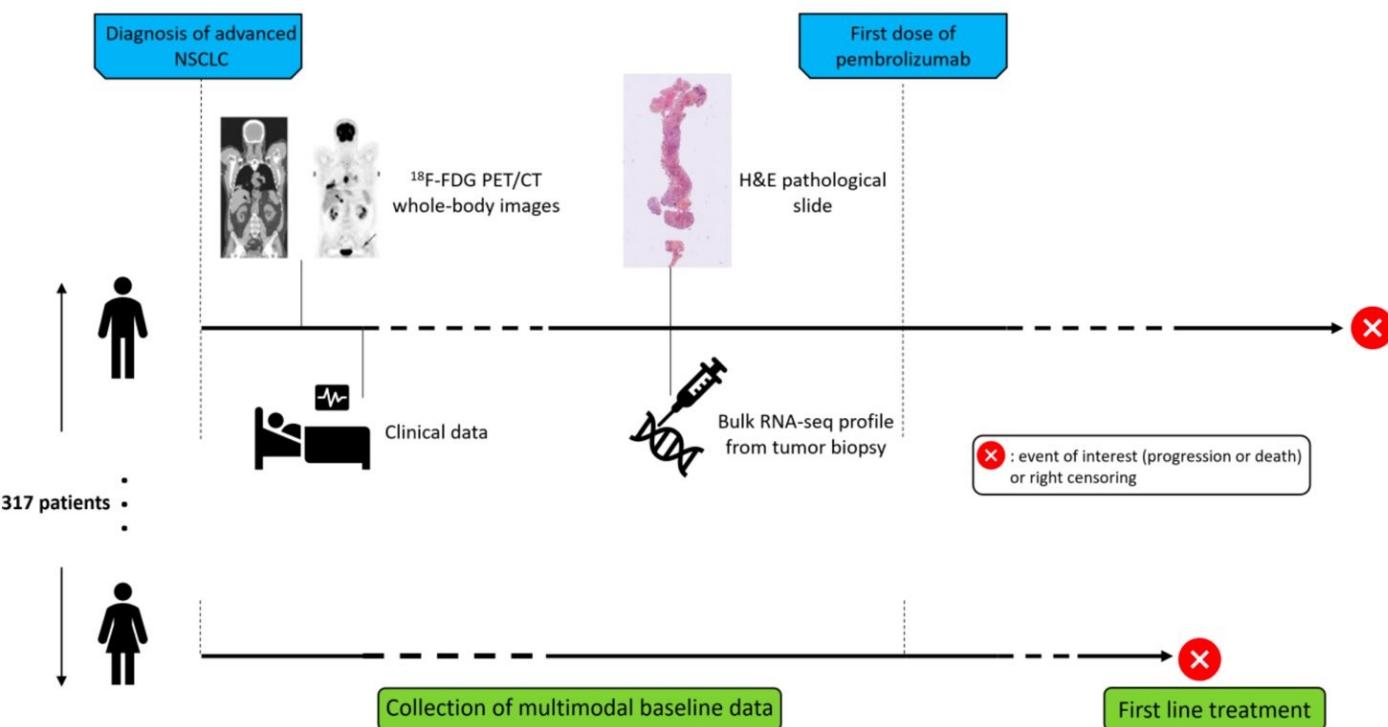
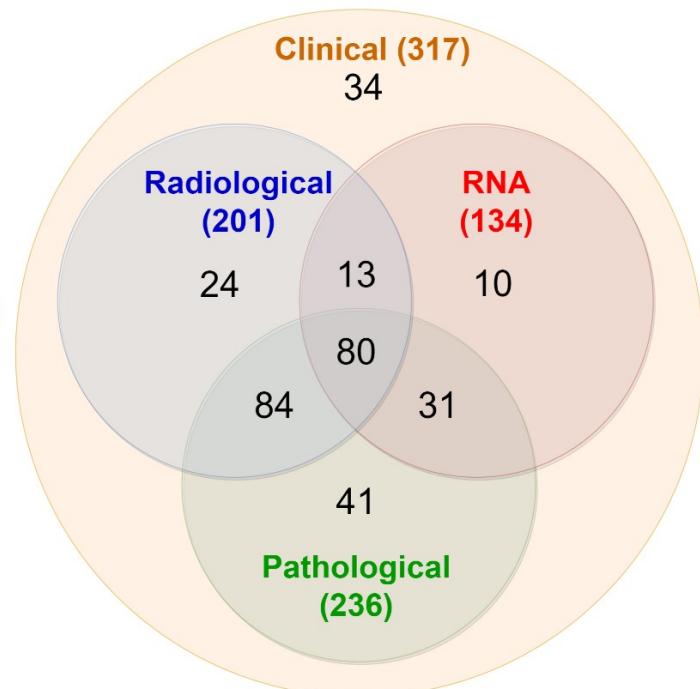
Multimodality to predict immunotherapy outcome in lung cancer

1. **Methodological question:** Can multimodal machine learning (& modelling) approaches build more accurate prognostic (potentially predictive) signatures ?
2. **Biological question:** Can we identify mechanisms associated with immunotherapy response with multimodal analyses ?

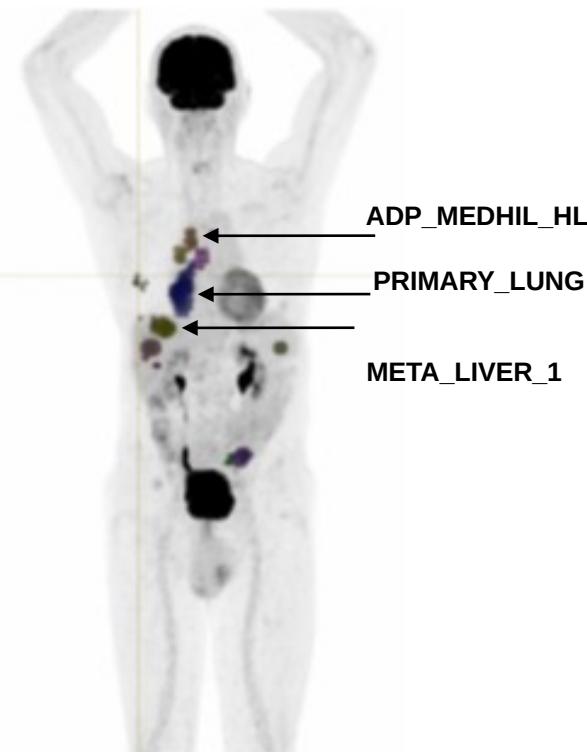
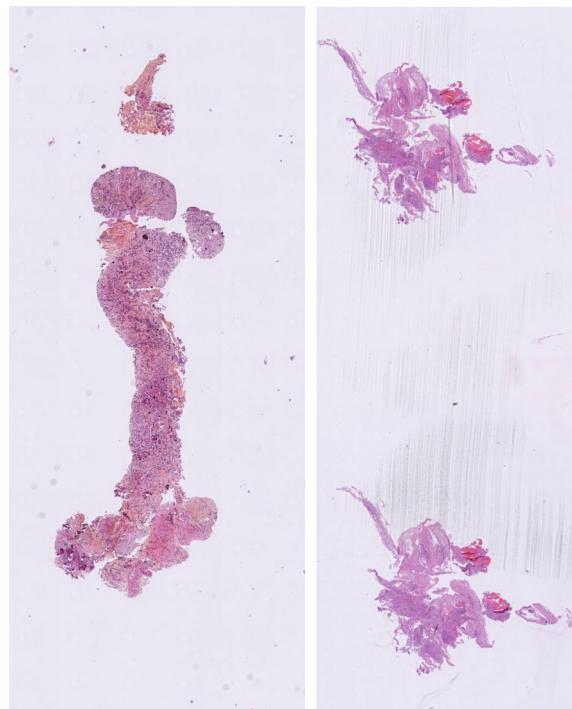
Outlines

- 1. Introduction:** build new biomarkers for immunotherapy outcome in Non-Small Cell Lung Cancer
- 2. Materials and Methods:** A retrospective multimodal cohort to develop multimodal predictors
- 3. Results:** New proofs of the benefits of multimodal machine learning to build accurate prognostic models
- 4. Discussion:** What can we do next ?

A retrospective multimodal cohort - I

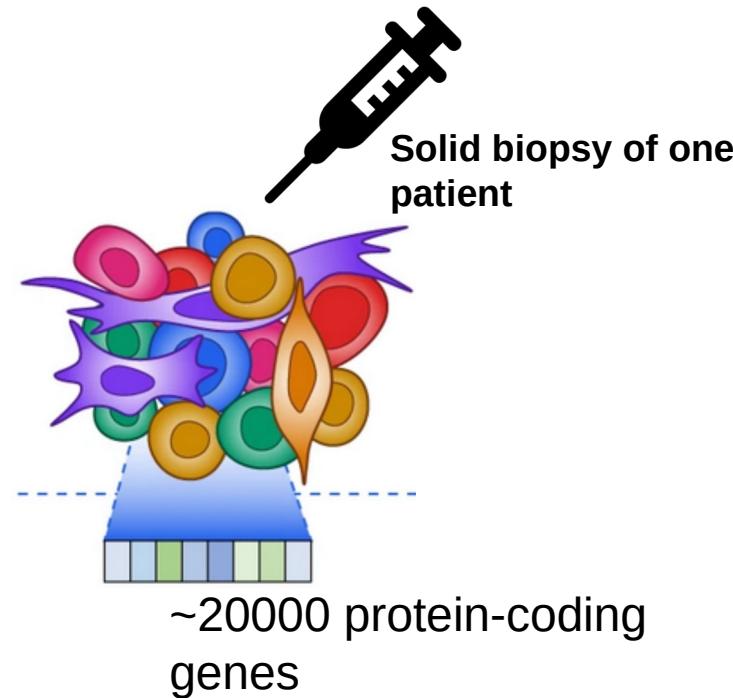


A retrospective multimodal cohort - II



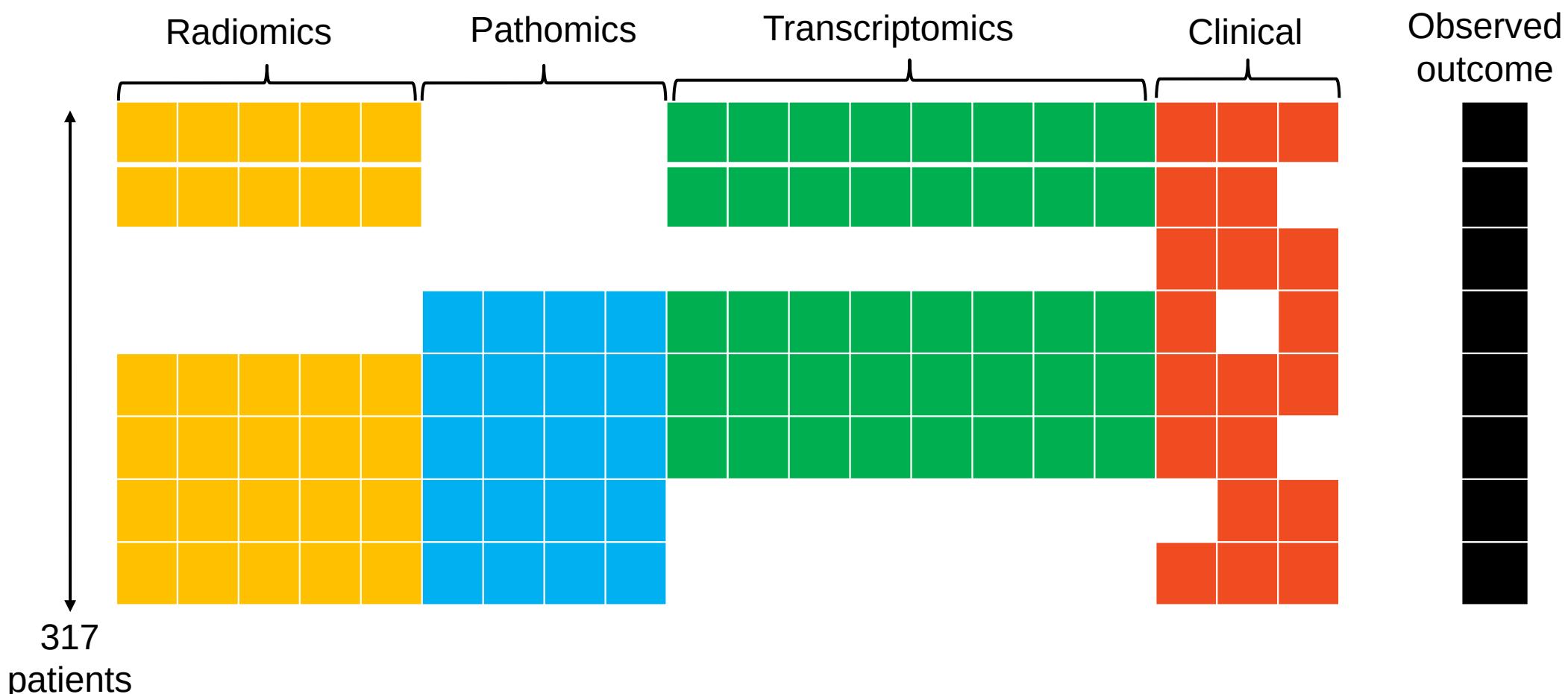
201 annotated/segmented
18F-FDG PET/CT

236 annotated/segmented
digitized HE slides

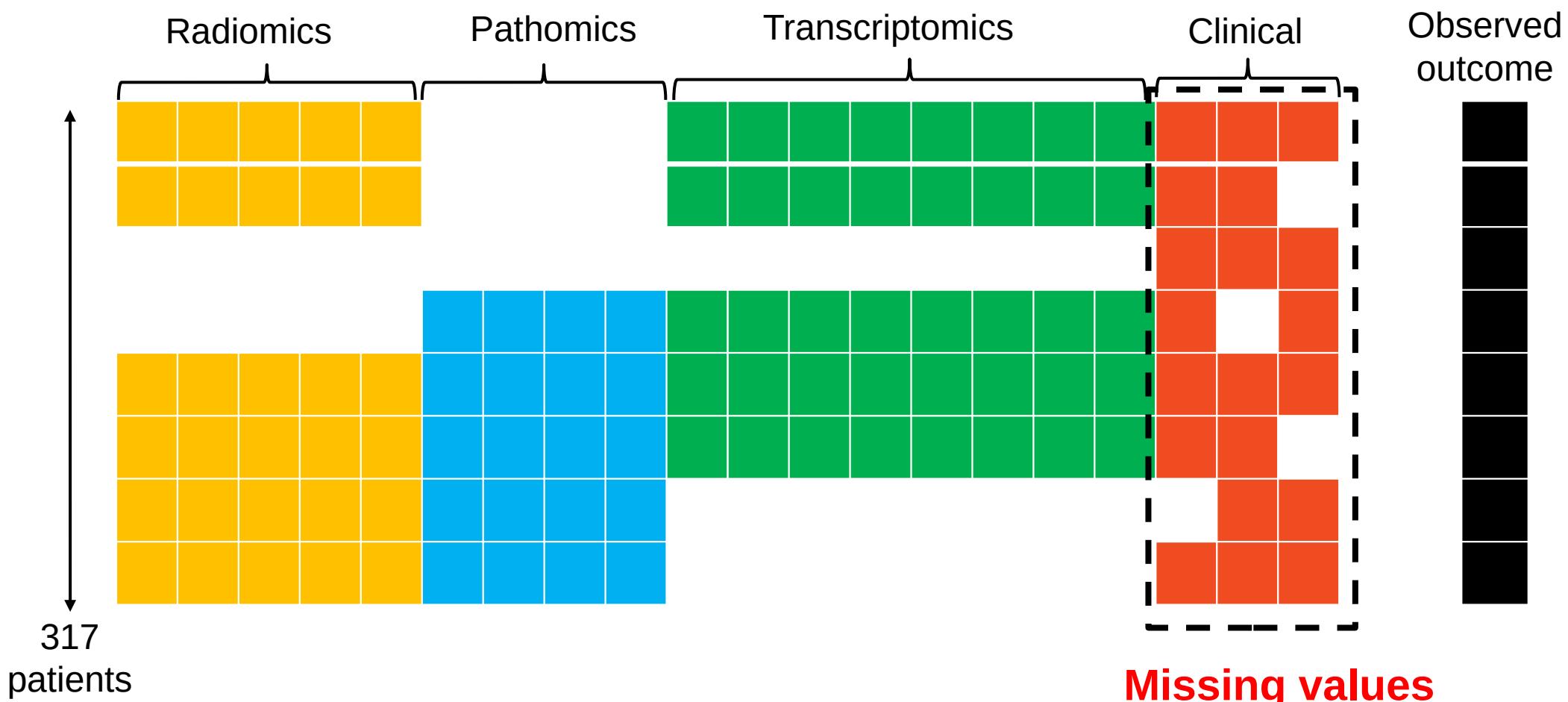


134 bulk RNA-seq profiles
from solid biopsy

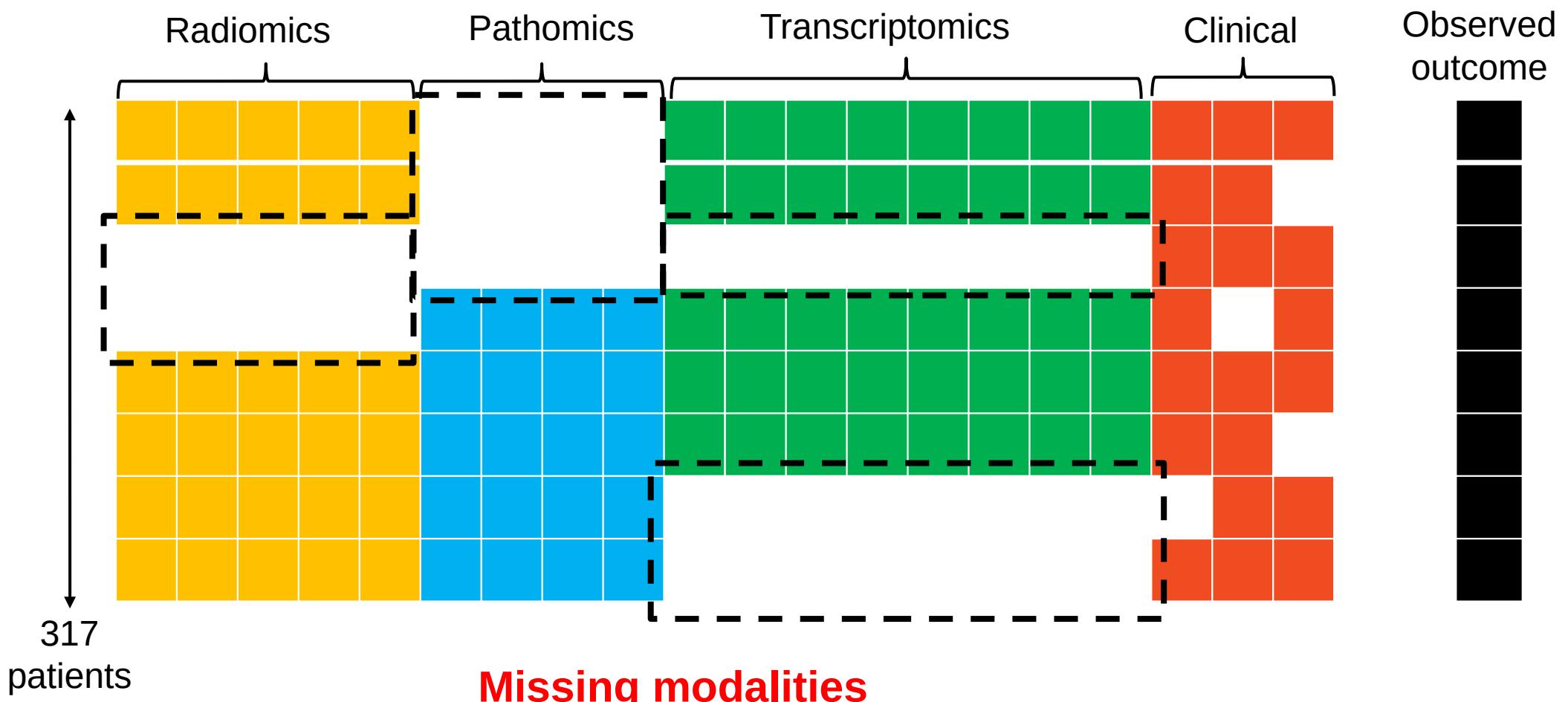
A retrospective multimodal cohort - III



A retrospective multimodal cohort - III



A retrospective multimodal cohort - III



Investigate multiple learning tasks to extract consensus trends

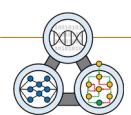
Multiple outcomes

Survival outcomes:
Overall Survival (OS)

Progression-Free Survival
(PFS)

Binary outcomes:
Death at 1 year

Progression at 6 months



Investigate multiple learning tasks to extract consensus trends

Multiple outcomes

Survival outcomes:
Overall Survival (OS)

Progression-Free Survival
(PFS)

Binary outcomes:
Death at 1 year

Progression at 6 months

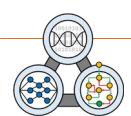
Multiple algorithms

Linear algorithms:
Logistic regression with
elastic net penalty

Cox model with elastic net
penalty

Tree ensemble algorithms:
XGBoost

Random Survival Forest



Investigate multiple learning tasks to extract consensus trends

Multiple outcomes

Survival outcomes:
Overall Survival (OS)

Progression-Free Survival
(PFS)

Binary outcomes:
Death at 1 year

Progression at 6 months

Multiple algorithms

Linear algorithms:
Logistic regression with
elastic net penalty

Cox model with elastic net
penalty

Tree ensemble algorithms:
XGBoost

Random Survival Forest

Multiple fusion strategies

Late fusion

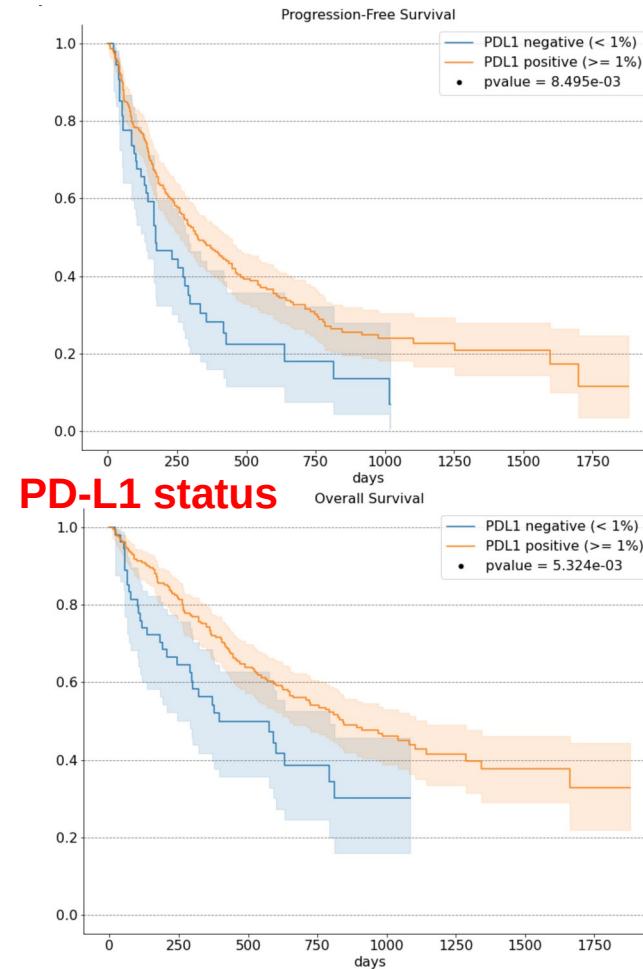
Early fusion
(without or with univariate
feature selection)

**Fusion with attention
weights
(DyAM)**

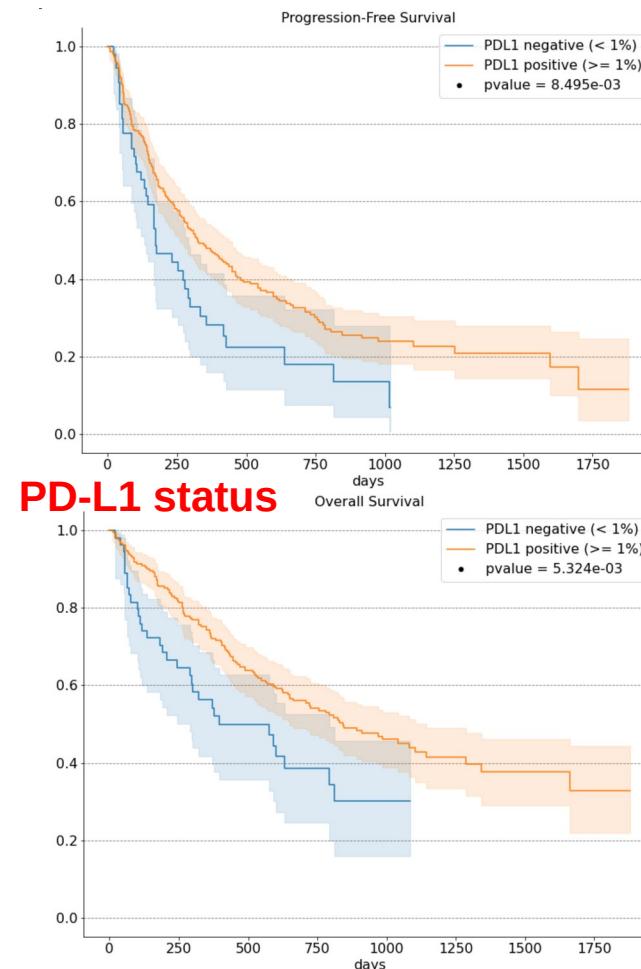
Outlines

- 1. Introduction:** build new biomarkers for immunotherapy outcome in Non-Small Cell Lung Cancer
- 2. Materials and Methods:** A retrospective multimodal cohort to develop multimodal predictors
- 3. Results:** New proofs of the benefits of multimodal machine learning to build accurate prognostic models
- 4. Discussion:** What can we do next ?

Univariate established biomarkers show limited performance

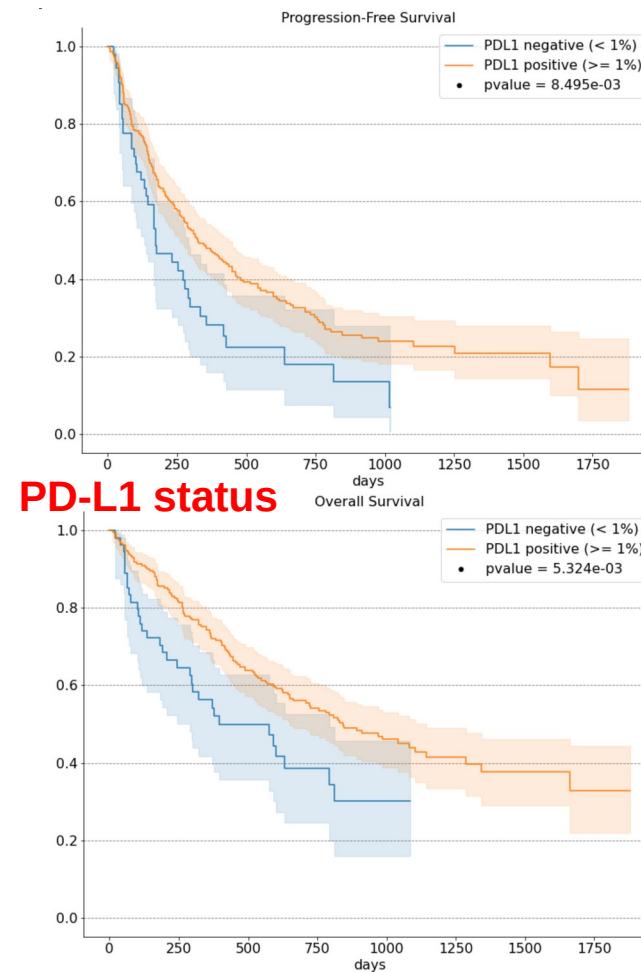


Univariate established biomarkers show limited performance

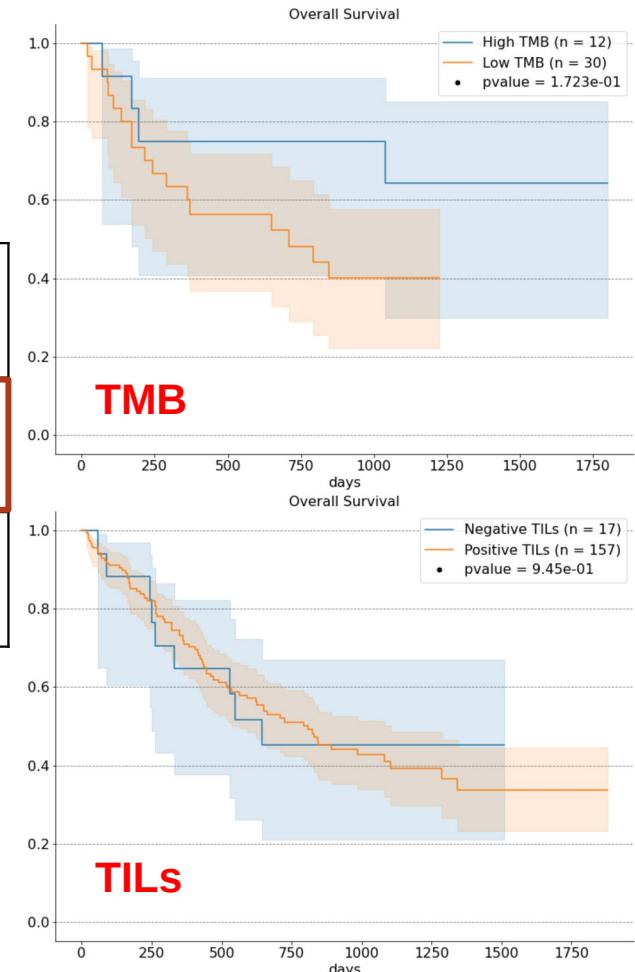


	C-index OS (whole cohort)
PD-L1 binary status	0.54 [0.51 – 0.57] pval=0.014
PD-L1 score (100 – TPS)	0.53 [0.48 – 0.58] pval=0.104

Univariate established biomarkers show limited performance



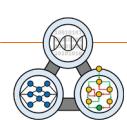
	C-index OS (whole cohort)
PD-L1 binary status	0.54 [0.51 – 0.57] pval=0.014
PD-L1 score (100 – TPS)	0.53 [0.48 – 0.58] pval=0.104



A benchmark of unimodal predictors

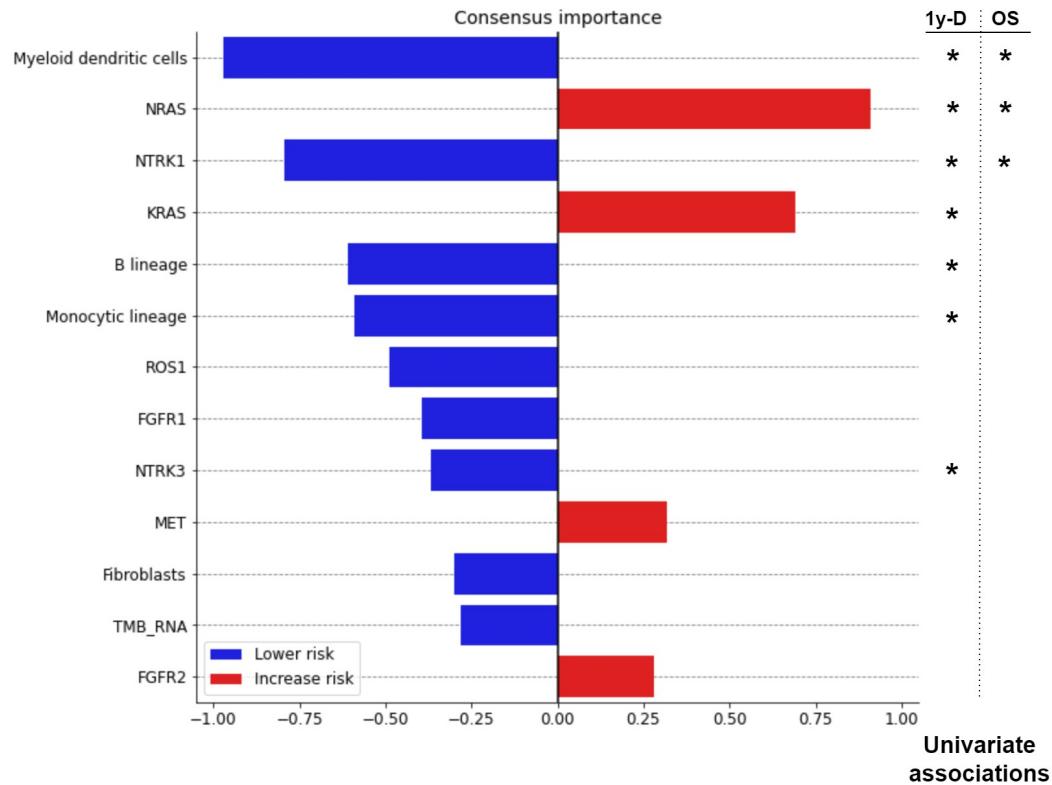
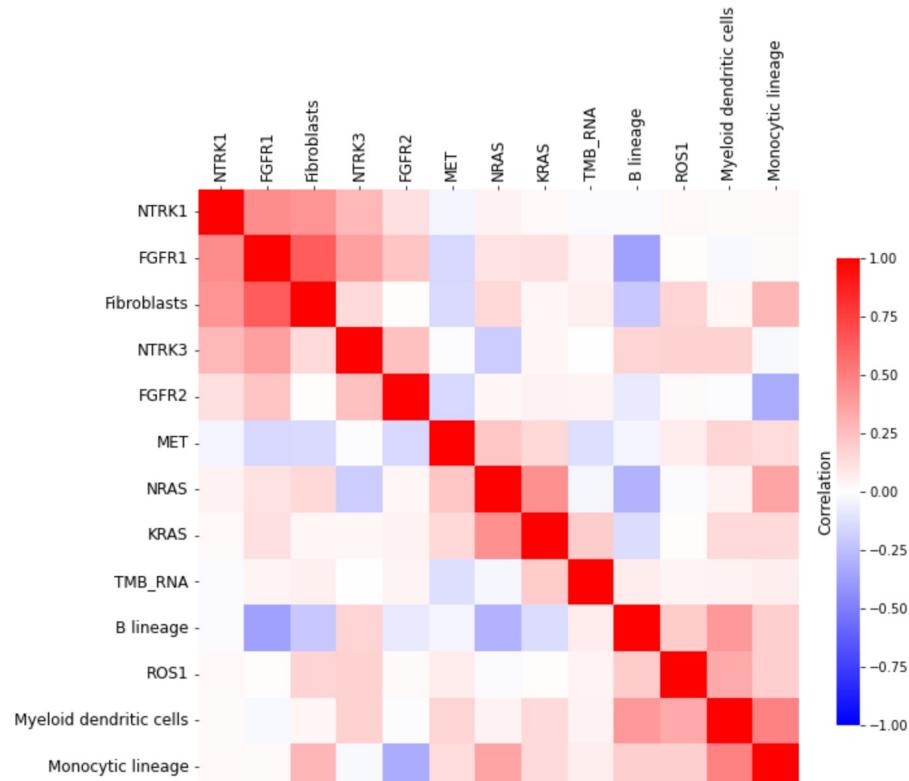
Target (number of patients)		OS (n=79)	1-year death (n=77)	PFS (n=80)	6-months progression (n=75)
Metric		C-index	AUC	C-index	AUC
Clinical	Tree ensembles	0.67±0.01 *	0.59±0.05	0.56±0.02	0.58±0.04
	Linear	0.60±0.02 *	0.73±0.02 *	0.53±0.03	0.61±0.03 *
Radiomics	Tree ensembles	0.61±0.02 *	0.62±0.04	0.57±0.01	0.56±0.05
	Linear	0.61±0.02 *	0.47±0.03	0.55±0.02	0.48±0.04
Pathomics	Tree ensembles	0.59±0.02	0.54±0.05	0.56±0.02	0.58±0.06 *
	Linear	0.58±0.02	0.56±0.03	0.51±0.02	0.61±0.03 *
RNA	Tree ensembles	0.69±0.02 *	0.75±0.04 *	0.57±0.02	0.60±0.04 *
	Linear	0.58±0.02	0.65±0.03	0.59±0.02 *	0.61±0.03

*: permutation p-value ≤ 0.05



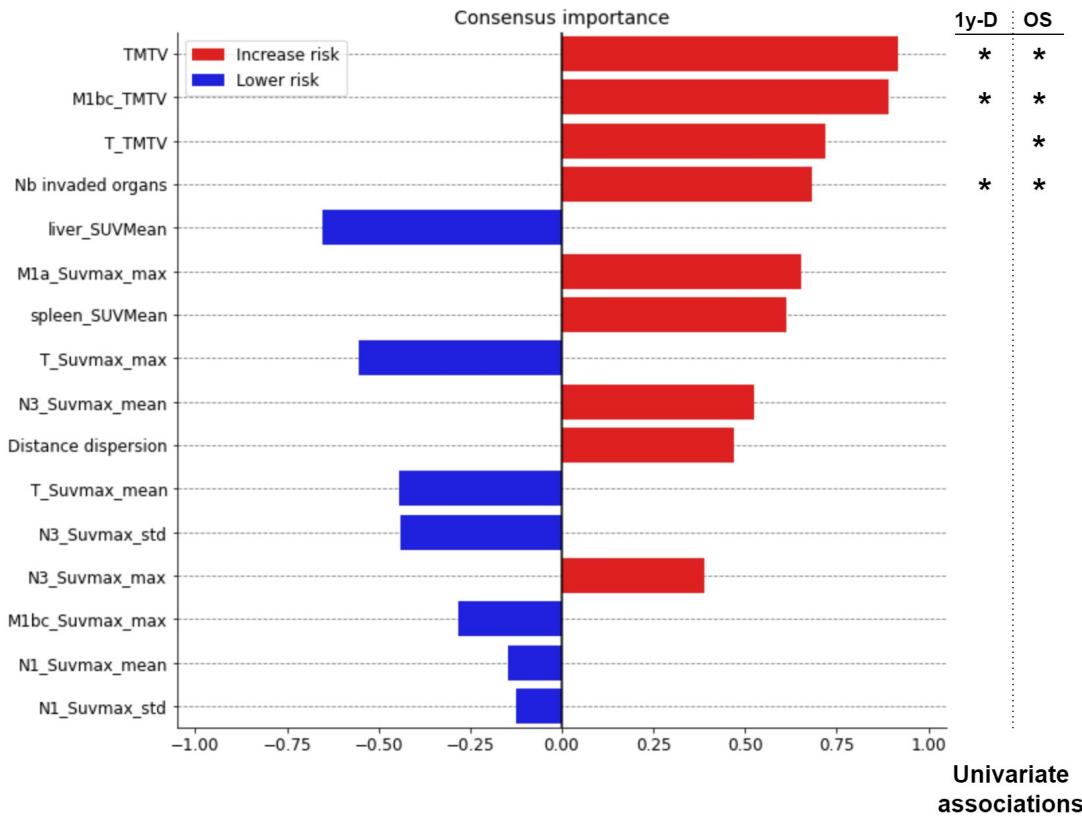
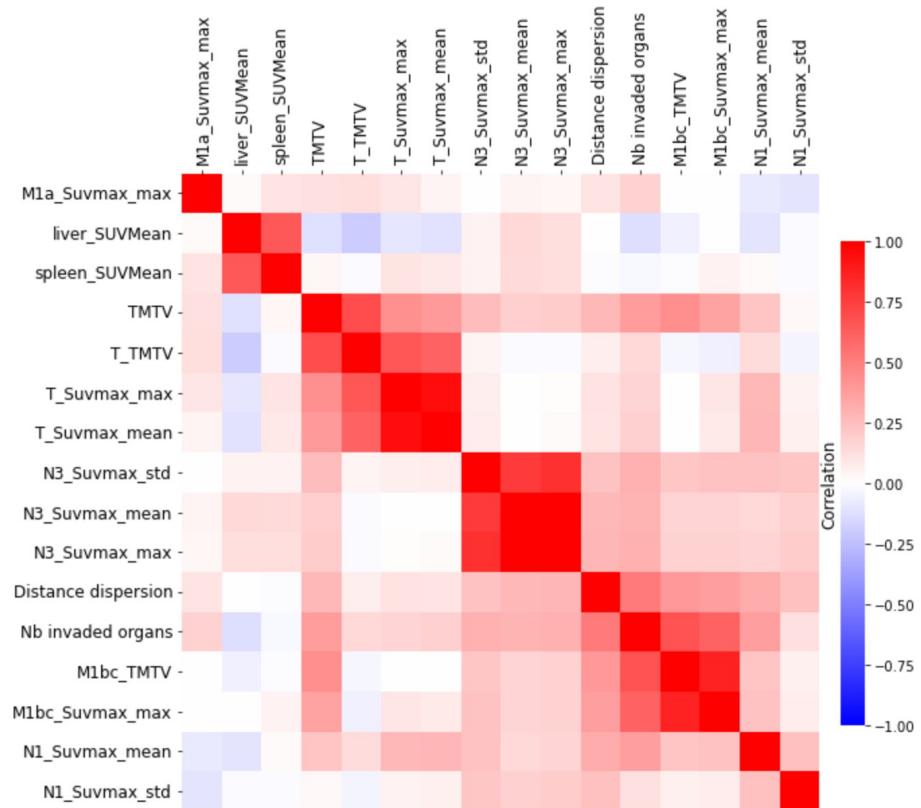
Robust feature importance – RNA modality

Feature importance ranking aggregated over both tasks (OS and 1 year death) and both algorithms (linear and tree ensemble)

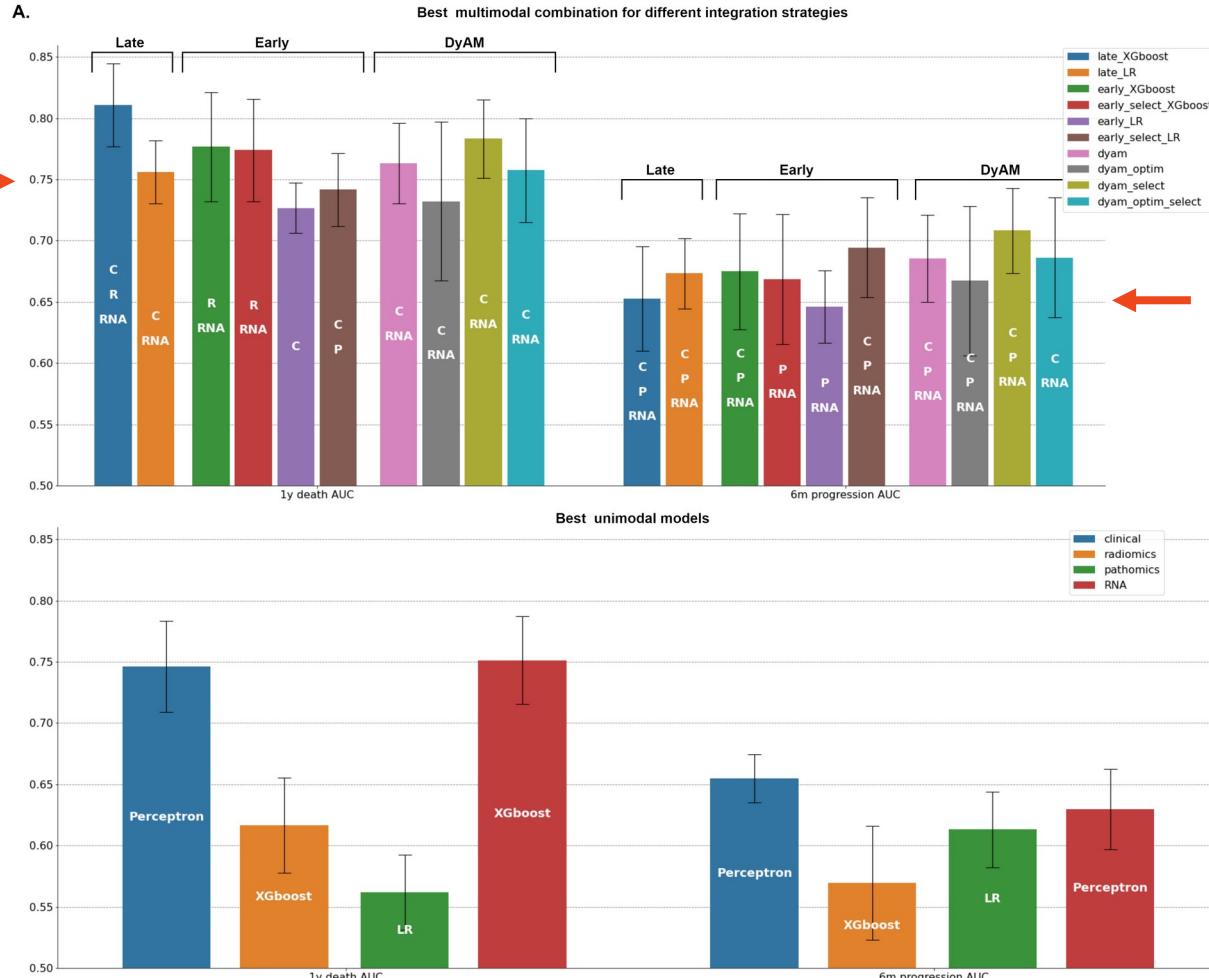


Robust feature importance – radiomic modality

Feature importance ranking aggregated over both tasks (OS and 1 year death) and both algorithms (linear and tree ensemble)



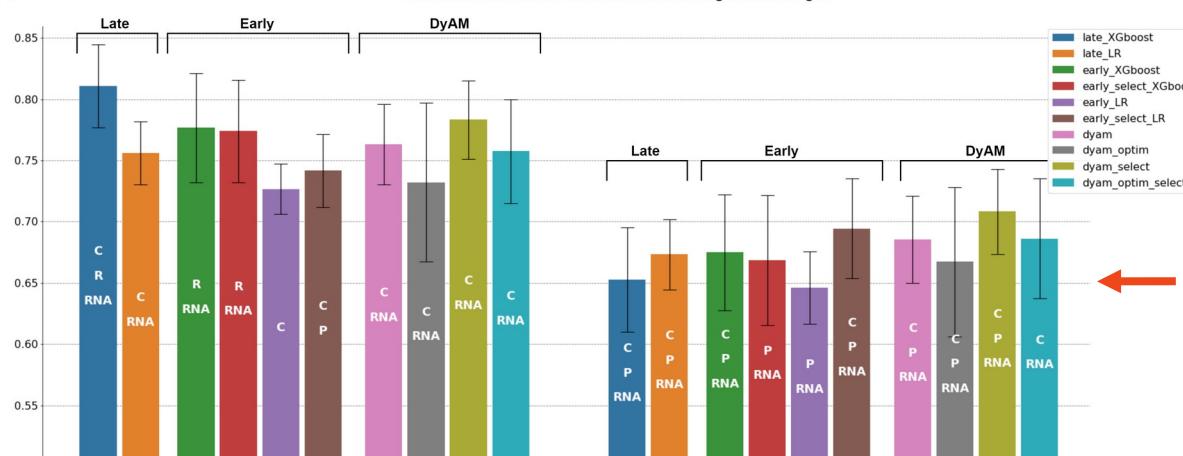
Benchmark highlights benefits of multimodal approaches



Benchmark highlights benefits of multimodal approaches

A.

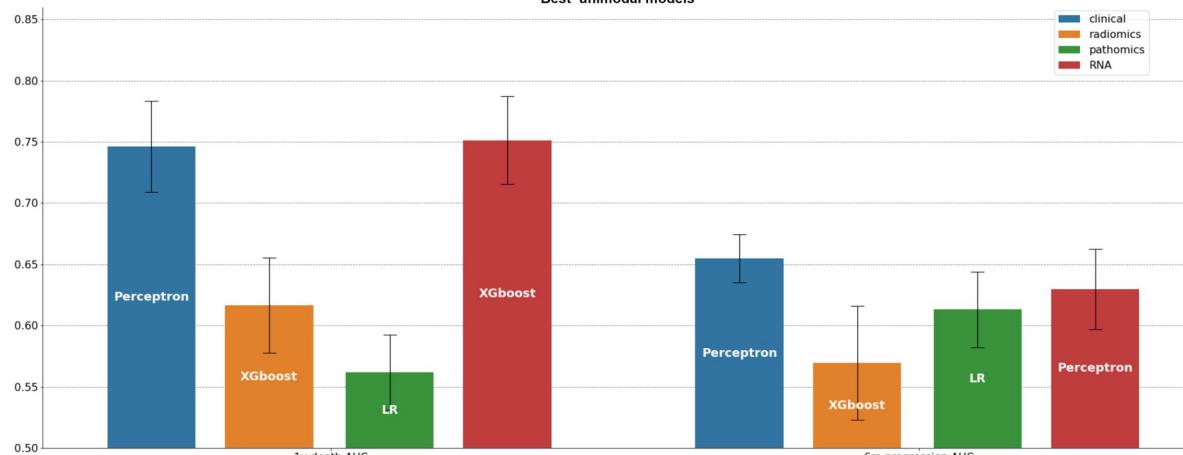
Best multimodal combination for different integration strategies



- The majority of multimodal models outperformed the best unimodal models

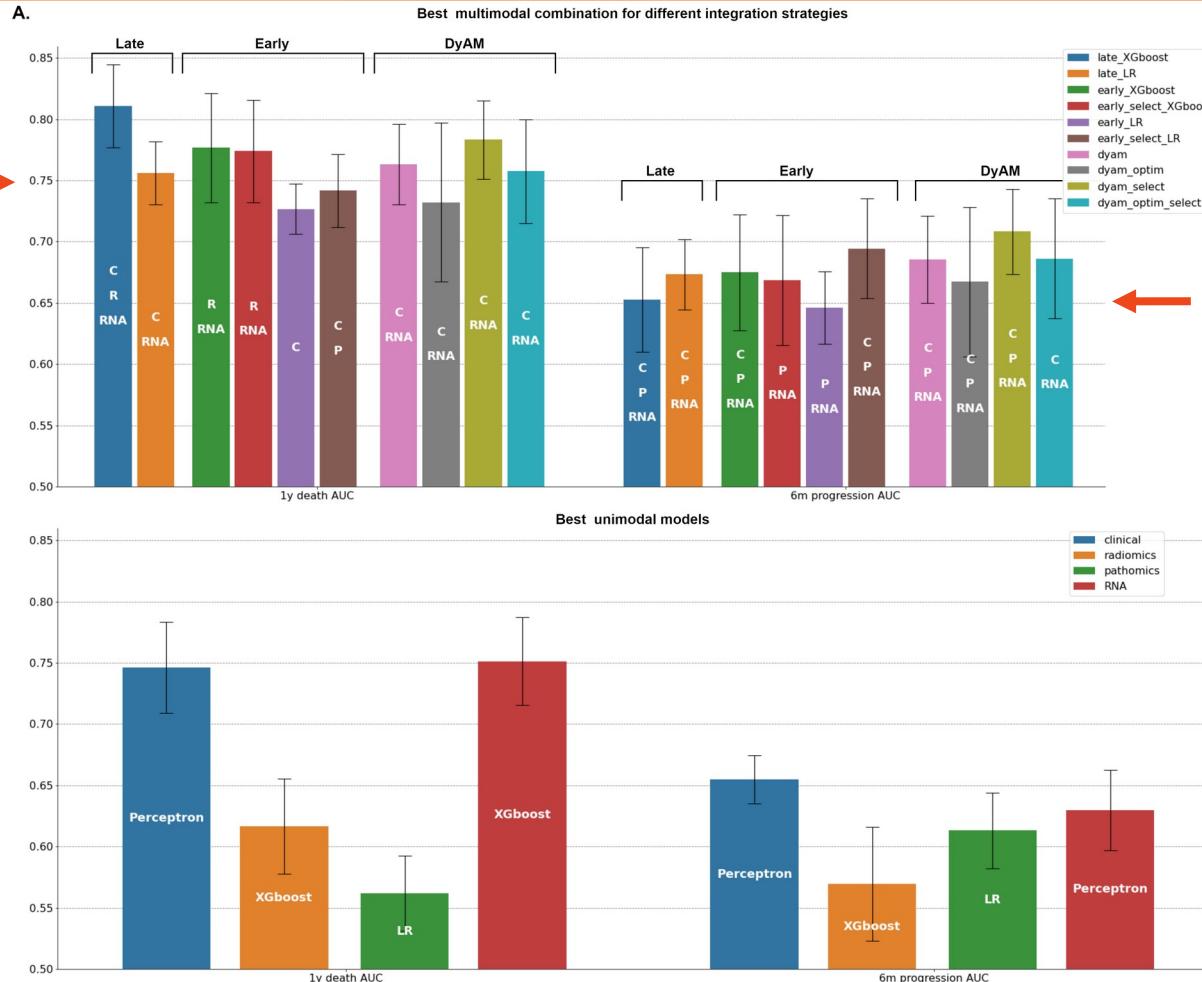
←

Best unimodal models



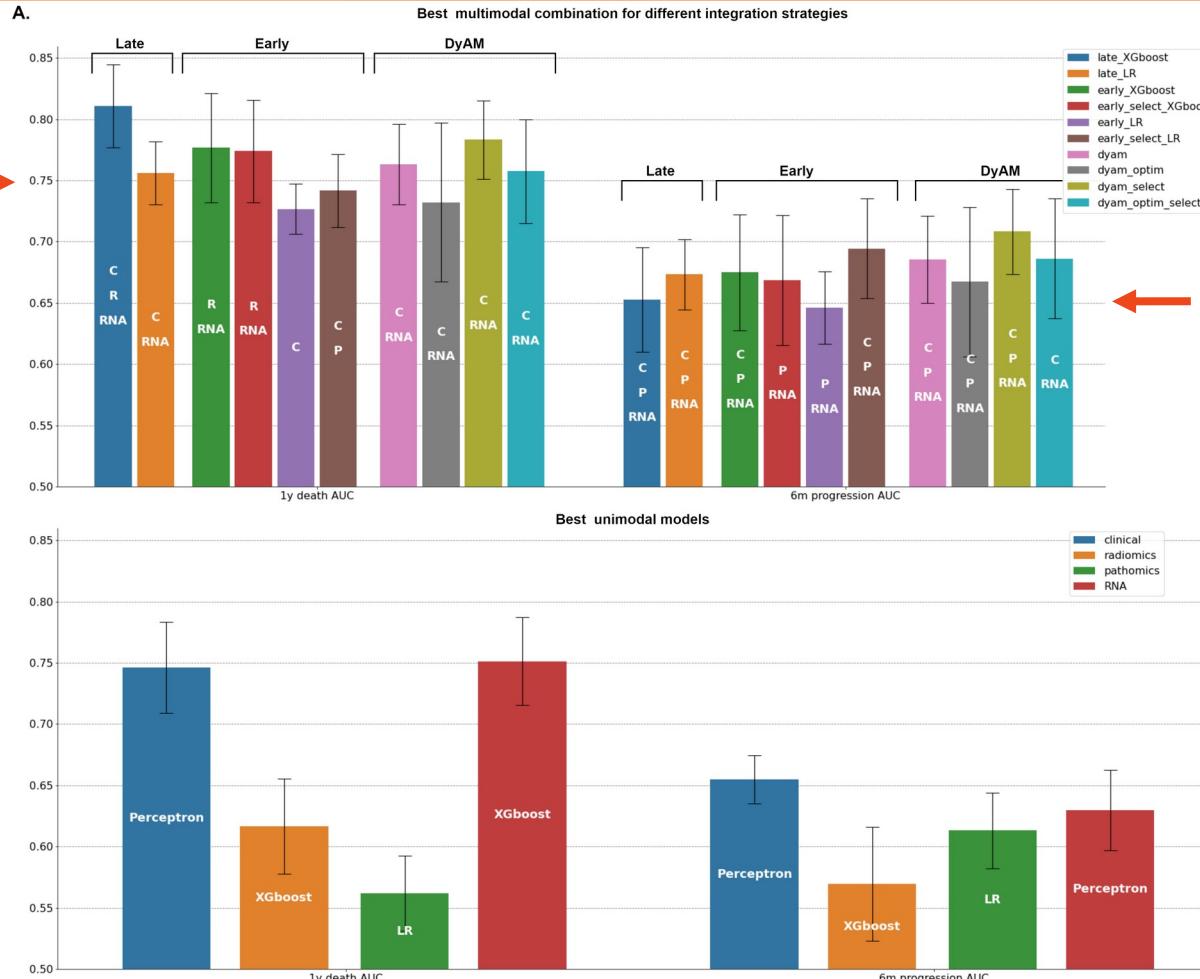
→

Benchmark highlights benefits of multimodal approaches



- The majority of multimodal models outperformed the best unimodal models
- Late fusion performed the best for 1 year death prediction

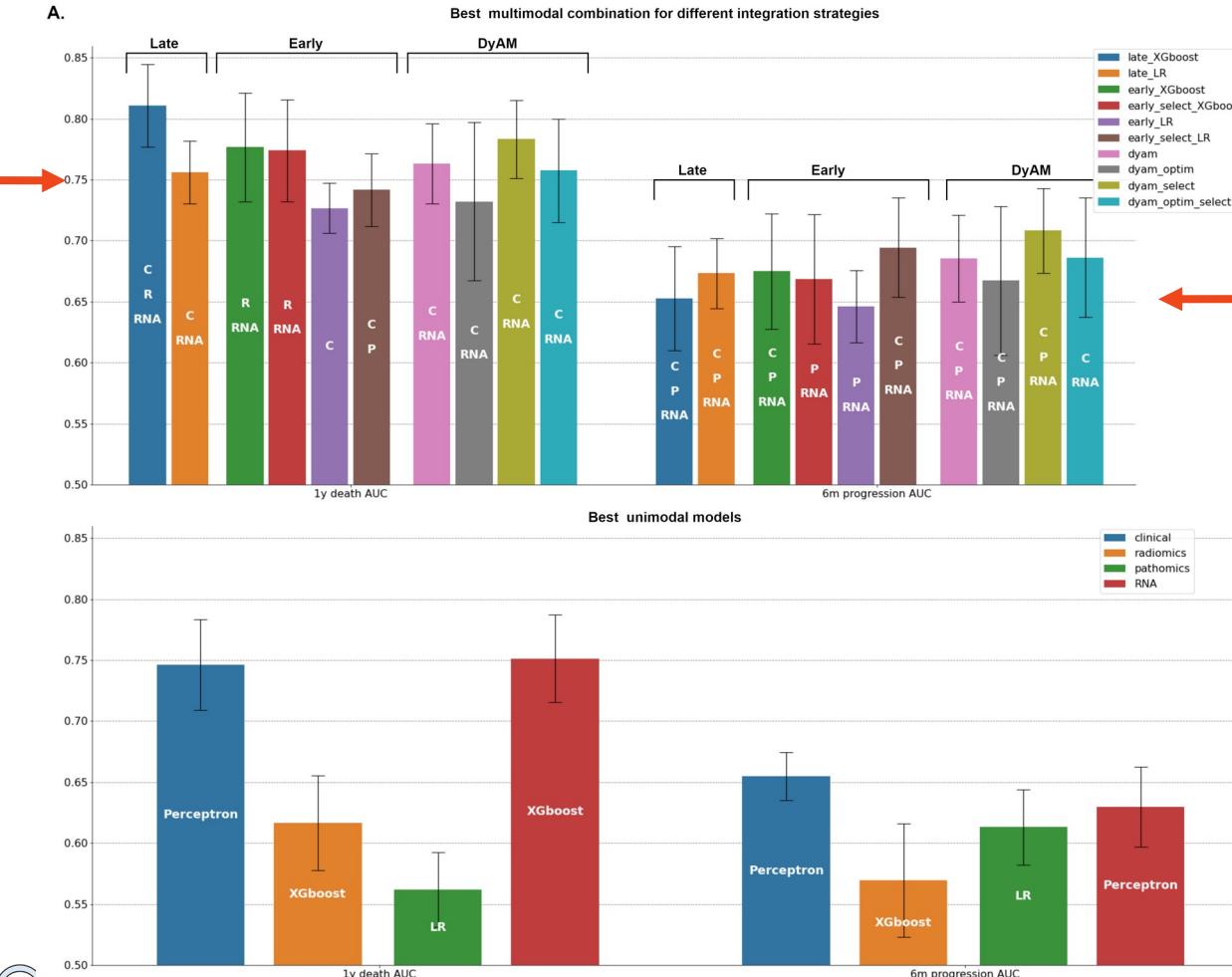
Benchmark highlights benefits of multimodal approaches



- The majority of multimodal models outperformed the best unimodal models
- Late fusion performed the best for 1 year death prediction
- Clinical, RNA and radiomic consistently involved in the best multimodal models for 1y death prediction

Benchmark highlights benefits of multimodal approaches

A.



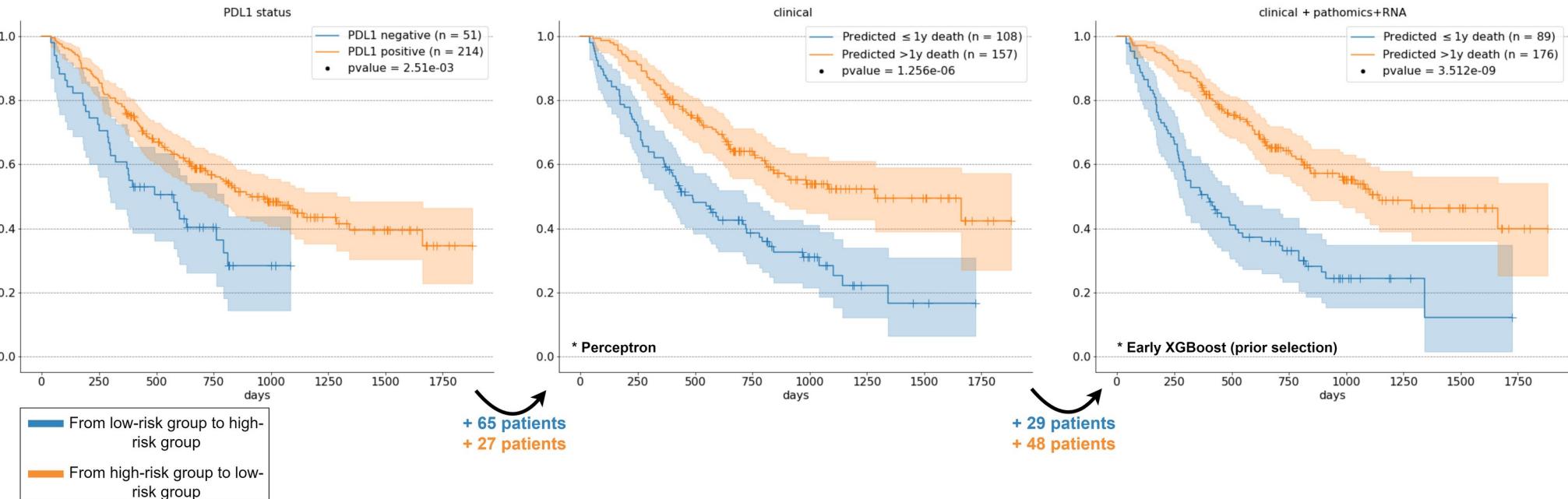
- The majority of multimodal models outperformed the best unimodal models
- Late fusion performed the best for 1 year death prediction
- Clinical, RNA and radiomic consistently involved in the best multimodal models for 1y death prediction

No integration strategy performed the best for all the tasks

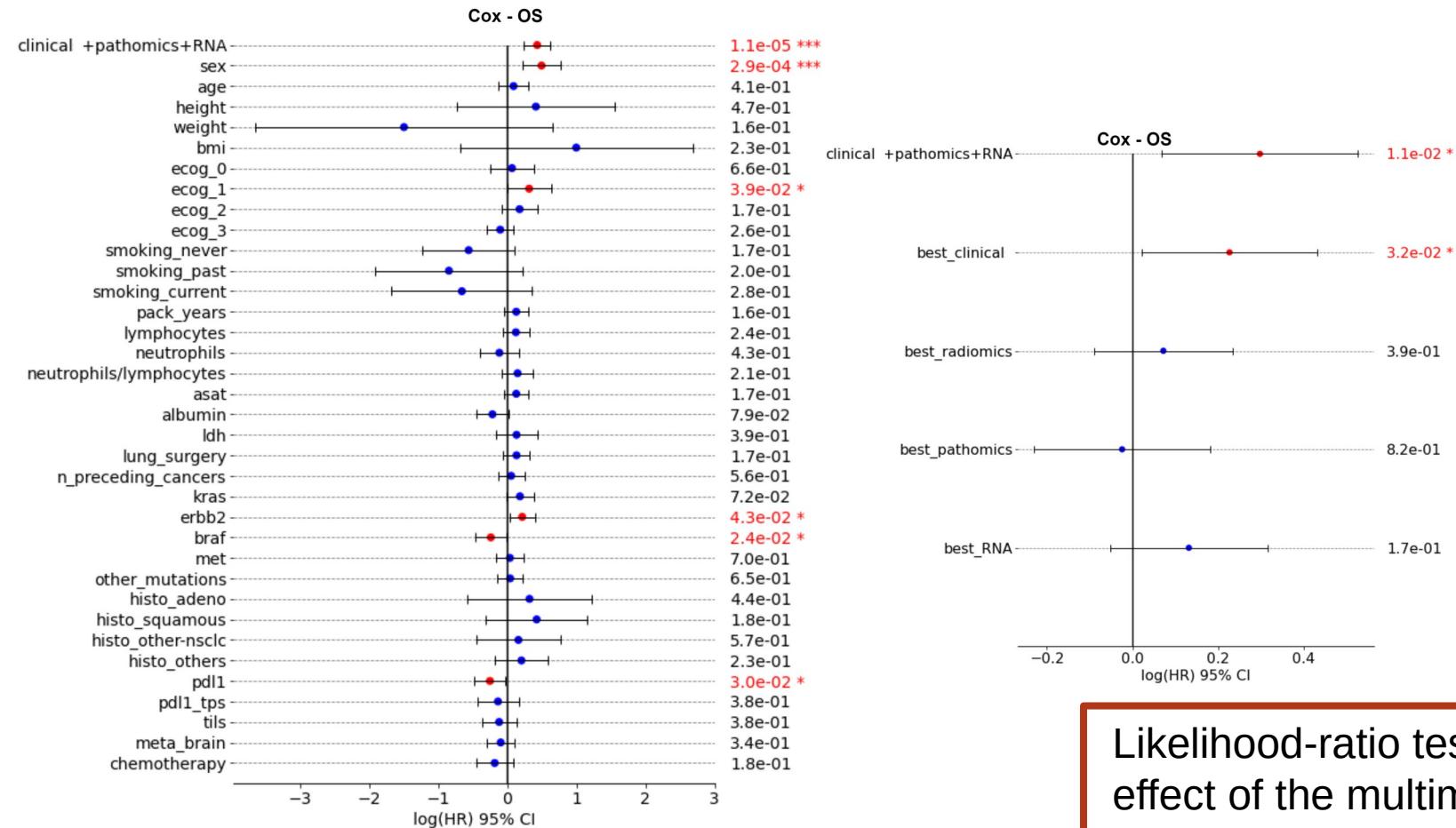
Multimodal score improves patient risk stratification

- A threshold is learnt on the training set of each fold of the cross-validation scheme and applied to the test set.
- Group membership is defined as the most frequently attributed group (low risk vs high risk) across the 100 repeats.

B.



Multimodal score brings additional predictive information



Likelihood-ratio tests show a significant effect of the multimodal score wrt to routine clinical information

Conclusions

1. Late fusion is a relevant baseline strategy/starting point for further multimodal studies (simplicity, handle missing modalities easily...)
2. We provided new evidence of the relevance of multimodal approach for building powerful predictors □ should motivate others to collect new and larger multimodal cohorts.
3. Simple signatures of the Tumor MicroEnvironment seems to predict well NSCLC outcome and lead to relevant hypotheses.
4. The results need to be further validated on larger an external data sets. More complex (e.g. end-to-end strategies) should be investigated.

Outlines

- 1. Introduction:** build new biomarkers for immunotherapy outcome in Non-Small Cell Lung Cancer
- 2. Materials and Methods:** A retrospective multimodal cohort to develop multimodal predictors
- 3. Results:** New proofs of the benefits of multimodal machine learning to build accurate prognostic models
- 4. Discussion:** What can we do next ?

Project 1: Study the link between radiomics and RNA expression

- 93+ patients with RNAseq and PET images (biopsy site is missing for some of them)
- Are different clusters based on radiomics/imaging characteristics associated with differentially expressed genes or biological pathways ?
- Can we identify/probe biological pathways deregulation with radiomic characteristics ?
- Can we use RNAseq data to understand better the radiomic phenotype of tumors ?

Project 2: Multiple Instance Learning for metastatic disease

- Use each metastasis as an instance with a hidden outcome to predict patient's outcome

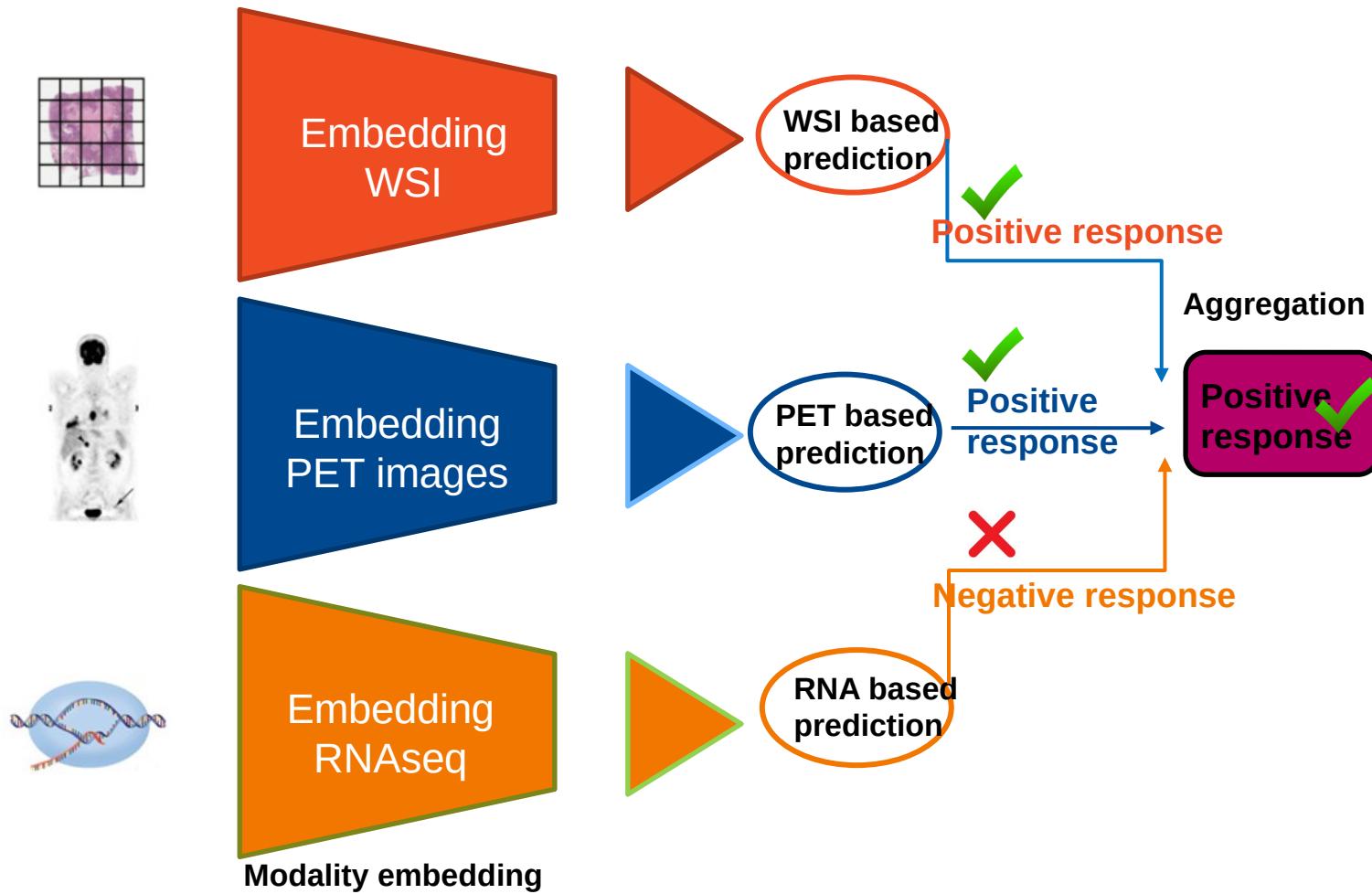
Project 3: Improve PET representation with supervised learning

- Predict the total tumor volume in lymph nodes, distant regions... from unannotated MIP images

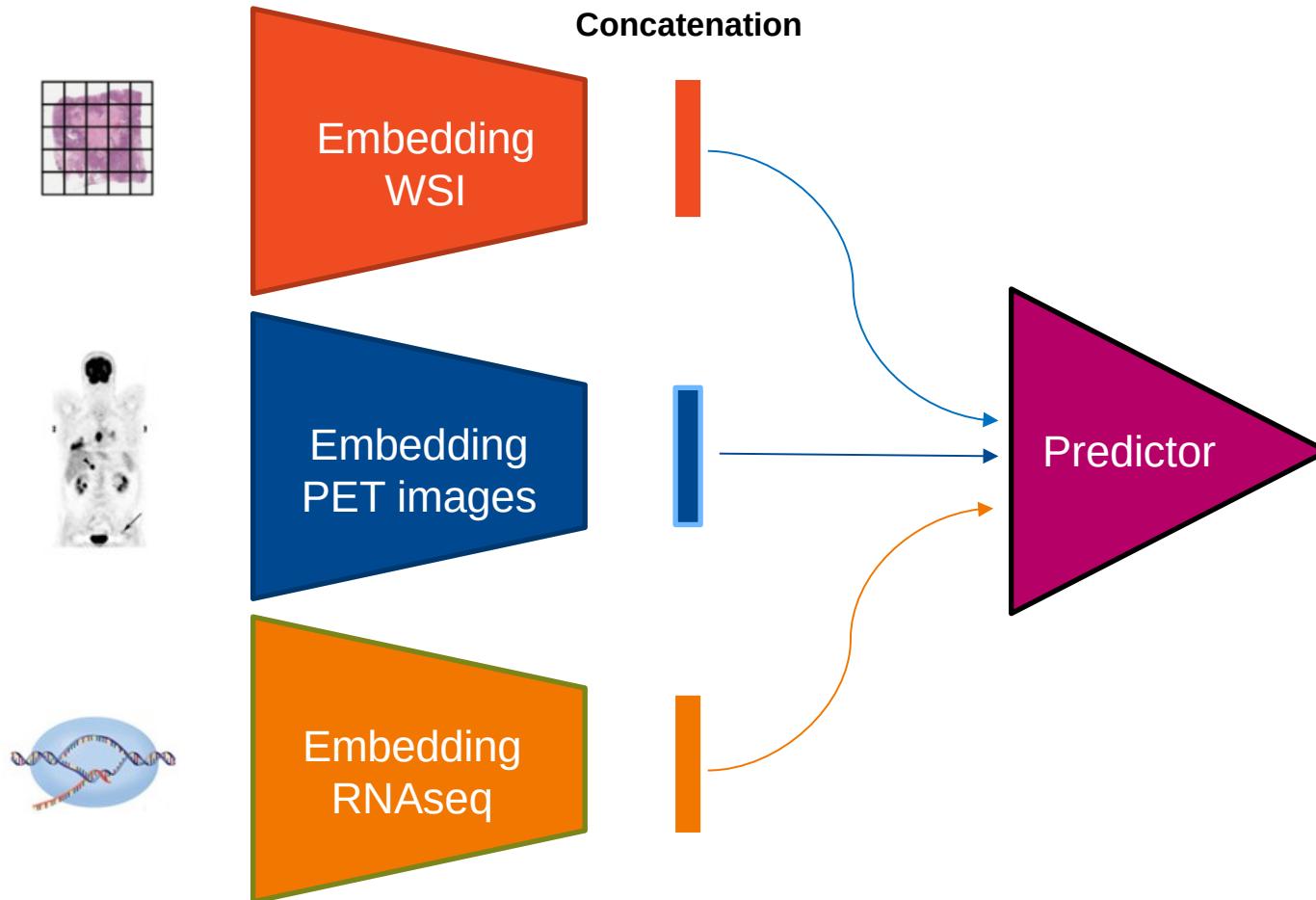
Acknowledgements

- **Curie-Montsouris Chest center:** Nicolas Girard, Sarah Lagha, Anne-Sophie Tedesco
- **Imaging department Curie:** Hervé Brisse, Marie Luporsi, Toulsie Ramtohul
- **Pathology department Curie:** Clément Beaulaton
- **Data department Curie:** Paulette Salamoun Feghali
- **LITO Curie:** Irène Buvat, Fanny Orlhac, Narinée Hovhannisyan, Nicolas Captier, Erwin Woff
- **SysBIO U900 Curie:** Emmanuel Barillot, Andrei Zinovyev, Christine Lonjou, Nicolas Captier
- **CBIO U900 Curie-Mines:** Thomas Walter, Marvin Lerousseau
- * **Immunity and Cancer:** Hélène Salmon

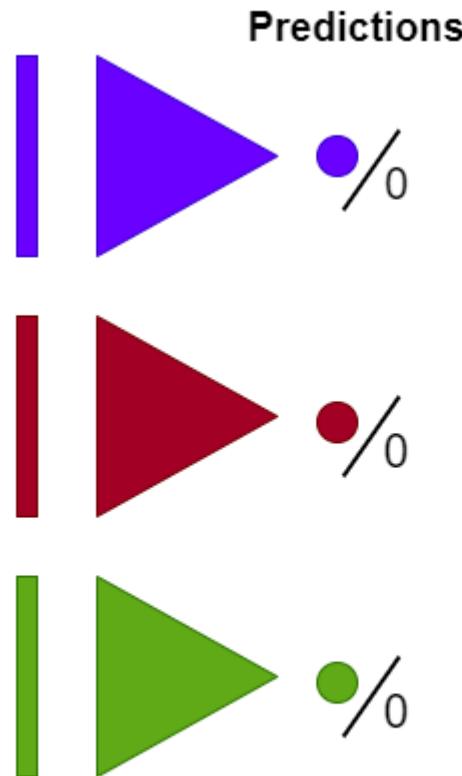
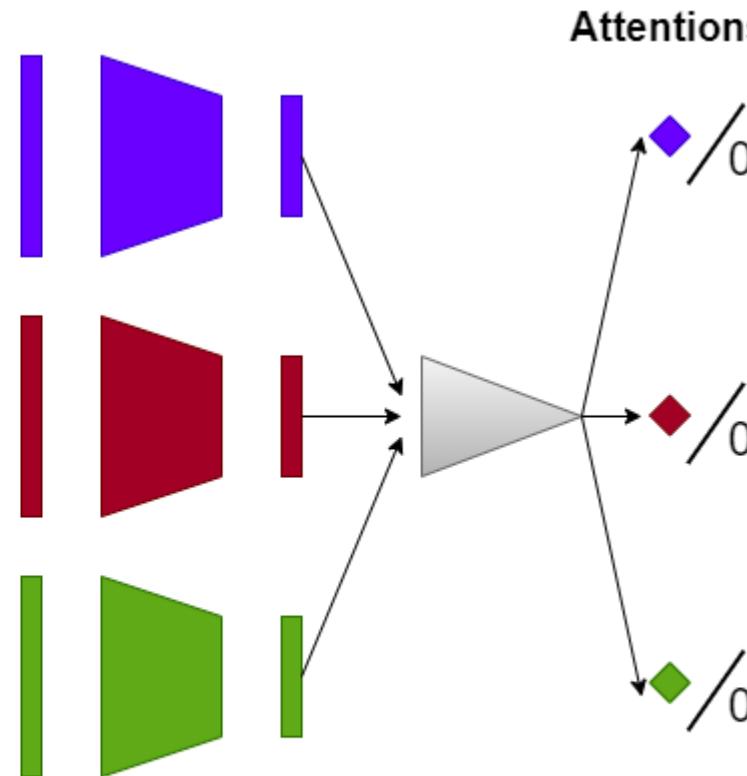
Late fusion strategy



Early fusion strategy



DyAM strategies



- Attention mechanism weighs each modality for each patient
- The model learns to combine different modalities through normalization and grey network

Final prediction:
The final prediction is the sum of three terms. Each term consists of a modality indicator (purple circle, dark red circle, or green circle) followed by a multiplication sign (x), followed by an attention indicator (purple diamond, dark red diamond, or green diamond), followed by a plus sign (+).